
401 

Acta Cryst. (1979). A35, 401--412 

A Probabilistic Theory of Two-Phase Seminvariants of First Rank via the Method of 
Representations. 

IV. Practical Aspects and Applications 

BY CARMELO GIACOVAZZO 

Istituto di Mineralogia, Palazzo A teneo, Universit~t, 70121 Bari, Italy 

RICCARDO SPAGNA 

Laboratorio di Strutturistica Chimica 'G. Giacomello', CNR (Area della Ricerca di Roma), Via Salaria 
Km 29 300, 000 16 Monterotondo Stazione (Roma), Roma, Italy 

IVAN VICKOVIC 

Zavod za opEu i anorgansku kemUu, Prirodoslovno-matematieTci fakultet SveuEilffta, Ul. SocijalistiEke 
RevolucUe 8, 41000 Zagreb, Yugoslavia 

AND DAVIDE VITERBO 

lstituto di Chimica-Fisica, Universitd, Corso M. D'Azeglio 48, 10125 Torino, Italy 

(Received 21 July 1978; accepted 7 December 1978) 

Abstract 

An algorithm is devised to calculate the expected values 
of two-phase seminvariants of first rank in space 
groups up to orthorhombic. This algorithm is based on 
the probabilistic theory [Giacovazzo (1979). Acta 
Cryst. A35, 296-305]. The method has been tested on 
several known structures using the probabilistic for- 
mulae obtained via the Gram-Charlier expansion of 
the characteristic function. We report here the results of 
the calculations which show how the method can 
secure a good estimate of a limited number of two- 
phase seminvariants. These estimates can certainly be 
of great help in the initial stages of phase determination. 
In addition, the estimated values of the two-phase 
seminvariants can be used as a figure of merit to 
discriminate among the several sets of phases generated 
in a multisolution process. The use of two-phase 
seminvariants for enantiomorph discrimination in space 
groups of class 222 is also illustrated. A detailed 
comparison with the coincidence method shows the 
noticeable improvement attained by the present 
algorithm. 

1. Introduction 

Two-phase seminvariants are those linear combinations 
of two phases 

• = ~0, + ~0v (1) 

whose indices satisfy the condition 

u + v = 0 (mod cos), (2) 
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where ~ is the seminvariant modulus of the given 
space group. The first attempt at evaluating, by means 
of the coincidence method, the values of these relation- 
ships, for centrosymmetric structures, was described by 
Grant, Howells & Rogers (1957). The idea of coin- 
cidence was extended to noncentrosymmetric space 
groups by Debaerdemaeker & Woolfson (1972); 
Giacovazzo (1977a,b) derived a generalized probabil- 
istic theory of the coincidence method which is valid 
for all space groups. More recently Green & Hauptman 
(1976, 1978a,b)and Hauptman& Green (1978), using 
the neighborhood concept, have derived conditional 
probability distributions for two-phase seminvariants in 
space groups P i and P 2 r 

In this paper we describe some practical aspects of 
the application of a probabilistic theory recently 
described by Giacovazzo (1979) which uses the idea of 
representation (Giacovazzo, 1977c). 

We recall here that • is a two-phase seminvariant of 
first rank, if two rotation matrices Ru and Rq and at 
least a vector h exist in principle (in the sense that I Ehl 
may or may not be experimentally measured) such that 

9'1 = ¢ '  + ¢ba , -  Chaq (3) 

is a structure invariant. In (3) ~ '  is a symmetry 
equivalent of ~,  i.e. 

~ '  = CuR~ + ¢,Ro (4) 
and 

uR.  + vR~ + h ( R p -  Rq) = 0. (5) 

Comparing (5) with (2), the condition 

h(Rp -- Rq) ---- 0 (mod cos) 
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follows. In Table 1, for symmetry classes up to ortho- 
rhombic, the rotation matrices R~ and the possible Duo 
= (R u -  Rq) matrices are given, together with the 
seminvariant moduli ms. We shall see below how this 
table is used to define the two-phase seminvariants in all 
the space groups of the first three symmetry systems. 

The structure invariant ~'t in (3) differs from the 
seminvariant q~ by a constant angle. We have in fact 

l/t1 - -  ~ '  = q~hR~- ~0hl~ = 27~h(Tq - -  Tp),  

where T u and Tq a r e  the translation vectors correspond- 
ing to the rotation matrices R u and Rq. Therefore, the 
evaluation of ¢~ is at the same time an estimate of q>. 

The first' representation of the seminvariant • is 
defined by the collection of all invariants gt~ obtained 
when h ranges over reciprocal space and R u, Rq range 
over the set of the rotation matrices. The first phasing 
shell of • comprises the set of diffraction amplitudes 
which are basis or cross magnitudes of at least one 
invariant ~'~. We shall denote this set {B }1. 

Below, reference is made to paper III of this series 
(Giacovazzo, 1979) and the equations denoted (III.xx) 
refer to it. 

2. An algorithm for the estimation of  two-phase 
seminvariants in space groups up to orthorhombie 

Proposition 4 of paper III warrants that, if ~0n + ~0, is a 
structure seminvariant of first rank, there are at least 
two reciprocal vectors h I and h 2 and two rotation 
matrices R u and Rq for which the system 

{ : = h l - h  2 (8a) 

= --htR u + h2R q (8b) 

holds. If { h 1} and { h 2 } denote the collections of vectors 
h I and h 2 which satisfy (8), then the set of quartet 
invariants 

~v + (~uRp + ~ThzR , - -  ~h2R q, (9a) 

~0v + (PuR, + ~htR , - -  (/)lt,R., (9b) 

may be constructed as h t varies within {h I } and h 2 = h 1 
- u varies correspondingly within {h2}. The expected 
values of the quartets (9a) and (9b) depend also on the 
magnitudes of the cross reflexions: 

h2(R q -- Ru); v + h2Ru; hlR u, (10a) 

h,(Rq -- Ru); h2Rq; uRq + h l R  p. (10b) 

Table 1. Rotation matrices R t, their possible differences Duq (only the diagonal elements of  the matrices are 
given, the off-diagonal terms being all equal to zero) and seminvariant moduli o~sfor the eight symmetry classes 

up to orthorhombic 

Class number 
and Class 

Rl matrices symbol to s (200) 

1 R~ = ( 1 1 1 )  1 ( 0 0 0 )  - 

2 R~ = (111) 
R 2 = ( i i i )  i (222) - 

3 Rt = (111) 
R2=(i l i )  2 (202) - 

4 R 1 = (111) 
R 2 =  (11.1) m (020) - 

5 R l =  (111) 

R2 = (!  [ !) 2/m (222) - 
R 3 = (111) 
R 4 = (1 [ 1) 

6 R~ = (i 11) 

82 = (1 [ [) 
83 = (_[ 11) 222 (222) - 

R 4 = ( 1 1 1 )  

7 R1 = (111) __ 
R 2 -- (111) 
R 3 = (111) ram2 (220) Dr3 = (200) 

R4----- (111) 

8 S t  = (11_1) 
R 2 =  (111) 
R3 = (~1_/.) 
R 4 = (1 l 1) 
R 5 = ( i i i )  m m m  (222) DI6 = (200) 

R 6 =  ([11) 
RT= (lil_) 
R s = ( 1 1 1 )  

Types of  D m = Rp - Rq matrices 

(020) (002) (220) (202) (022) (222) 

. . . . .  D12 = (222) 

D,2 = (020) 

D12 = (202) 

D,4 = (020) - - D~3 = (202) - D,2 = (222) 
D34 = (222) 

D,4 = (220) D13 = (202) D,2 = (022) 
D23 = (22.0) D24 = (202.) D34 = (025) 

D12 = (2_20) 
Dl4 = (020) 

D3a---- (220) 

D15 = (222) 
D17 = (020) D t s =  (002) Dr4 = (220) D~3 = (202) D~2 = (022) D37 = (222) 

D67 = (220) D68 = (202) Dvs = (022) D4s = (22_2) 
D26 = (222) 
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The third cross vector of the quartet (9a) and the 
second cross vector of the quartet (9b) are crystallo- 
graphically equivalent to one of the basis vectors of the 
quartets (9b) and (9a) respectively. 

These results suggested (paper III) the study of the 
distribution 

P(Eh,, Eh,, Eu, Ev, Eh,(aq-R,), Eh~(R¢-a,), Eua,+ h,a,, 
E,+ h2R). (11) 

As h x is allowed to vary within {h~ }, it will assume, in 
space groups up to orthorhombic (c f  corollary b of 
proposition 6 in paper III), the value --hlRvR q. 

Then, also, the vectors 

h~ =--hlRpR q, h~ =--(uRq + h,Rp)Rq 

satisfy the system (8) (cf. proposition 6 of paper III) 
and the following quartets can be constructed 

¢. + tp~R, -- tP~uR,+h,R,)R,n, + tP~,+h,R,, (12a) 

¢p, + t p ~ -  tPU,lt, + ~0h,R,, (12b) 

whose cross vectors are 

h2(Rq- Rv); v -  u R p -  h~Rq;--h~Rq, (13a) 

h l ( R  q --  Rv); uRq + h~Rv; h2R q. (13b) 

Similarly, as h2 is allowed to vary within {h21, it will 
assume the value --h2RpR q. 

Again, it is easily verified that 

h i ' - - - ( v  + h2Rp)R p, h~'=--h2RpR q 

satisfy the system (8) and that the following quartets 
can be set up 

~0v ÷ (ffuR, - -  ~v+hzR , ÷ ~O(v+h2R,)RvR q, (14b) 

whose cross vectors are 

h2(R q -- Rv); hlRp; v + h2Rp, (15a) 

hl(R q - Rp); --h2Rp;--v + uRq- h 2 S  p. (15b) 

From (12) and (13) and from (14) and (15) the 
distributions 

P (Eh: fuRq + htR ,, Eu, Ev, fhttRq- R,), Eh2(R ,- R,), Eu: 
E v - l u q , -  h,ll,), (16) 

and 
P ( Ev + h~a,, Eh: E~, E,,, Eht(R,-R,), Eh2tR¢-R,), 

E_v+uRq_h2Rp ~ Eh,  ) (17) 

are indicated, in the same way as (11) follows from (9) 
and (10). If in (11), (16) and (17) the variables, in the 
given order, are labeled as E~, E 2, . . . ,  Es, the 
expression for P(E~, E2, . . . ,  Es) is given in (111.21) for 
the centrosymmetric case and in (111.47) for the non- 
centrosymmetric (both derived via the Gram-Charlier 
expansion of the characteristic function). In these 
expressions we use e i = (I E i  l 2 - -  1). 

Referring to these equations we note that: 
(a) contributions labeled c 7 and e 8 when (111.21) 

applies to (11) reappear as e 2 and e~ when it refers to 
(16) and (17) respectively (cf. proposition 6 of paper 
III); 

(b) the contributions denoted 2 t i e  7 and 2tEe 8 when 
(III.21) is calculated with respect to distribution (11) 
are labeled 2e~e 2 when (III.21) applies to distributions 
(16) and (17) respectively; 

(c) contributions denoted e6e 7 and e 5 e s when (111.21) 
applies to distribution (11) reappear as eEe 6 and e185 
when it refers to distributions (16) and (17) respec- 
tively. Similar considerations hold for the terms 
~H4(ET)e6 and ¼H4(E8)~ 5. 

These considerations allow us to calculate the 
expected value of the two-phase seminvariant of first 
rank ~0.. + tp, in space groups up to orthorhombic by 
means of a six-variate distribution of the type 

P(Eh: Eh2, Eu, E,, Eh2(Rq-Ru)), (I 8) 

provided that the following conditions are satisfied: 
(a') the contributions esY'C 1 and e6~'e2 are cal- 

culated by allowing hi and h2 to vary within the 
asymmetric region of the sets {h~} and {h2}; 

(b') The contributions ~ '  2e~e 2 are calculated by 
allowing hi (or h2) to vary within the complete set {hi} 
(or {h2}) (i.e. hi assumes both values hi and--hlRpR q) 
provided that h I 5/= - h l R p R  q (or h 2 =¢: - - h 2 R p R q ) .  

In paper III it was shown how the system of 
equations (8) could be written in the form 

h I - -  h 2 + U (19a) 

h2(R q - Rp)= v + uRp, (19b) 

and how this could be solved for the unknown vectors 
ht and h E in a general way. When considering only the 
space groups up to orthorhombic, the solution of (19) 
becomes rather simple. We shall now consider an 
example to illustrate the procedure we have devised 
and, at the same time, to confirm that we are allowed to 
use the six-variate distribution (18) under the con- 
ditions (a') and (b'). Reference will be made to Table 1. 

Let us consider, in class 2, the reflexions 

u = 3 1 2  and v=ii~, 
forming the two-phase seminvariant 

= (ff312 ÷ (ff]'i'4 = ~312 - -  (fill4" (20) 
Substituting in equation (19b) we obtain 

h2\002/ (ii4)+ (312)= (406). (21) 

The matrix D~, = D12 is singular and there will not be a 
unique solution for h2; the set {h2} of all vectors lying 
on the reciprocal-lattice row (:2k3) will, in fact, satisfy 
equation (21). From (19a) we can then derive 

{h~} = (2k3) + (312)= (1,k+ 1,i). (22) 
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On assuming that the maximum value of the index k for 
the measured data is 8, we have 

{h~l {h2/ {h~l {h2/ 

l)i* ~ *  12i 213 
16i* 273" 13i :223 
15i* 263* 14i 233 
14i* 253" 15i 243 
13i* 243* 16i 253 
12i* 233" 17i 263 
~ii* 223* 18i 273 
10i 2i3" - :283, 
11 i 203 

(23) 

where we have marked with asterisks those reflexions 
which are symmetry equivalent to other reflexions in 
the set. From these values of h~ and h 2 we can set up 
several pairs of quartets whose general expressions are 
[cf. equations (9)]: 

tPiii + tpjff + (ff2k3 ÷ (ff2k3, 
(24) 

(~ii4 -at- (/9312 ÷ ~0f,k+l,I + (Pf, k+l, l  ' 

with cross vectors 

00d) ;  ( 1 , k - l , i ) ;  ( i , k +  1, 1), 

(202); (2k3); (2, k+2,  3). 

We see that the cross t e r m  V + h E R  p = ( 1 , k - l , i )  
belongs to the same reciprocal-lattice row as h~ and the 
term --(uRq+hlRp) = (2 ,k+2,3)  belongs to the same 
row as h 2 (cf. proposition 6, paper III). As hi varies 
within {h~t and h E varies within {h2t, they assume the 
values 

h~ = - -  h~RpRq : (1.k+ 1,1) 
and 

h~ = --(uSq + h~Rp)Rq = (2.k + 2.3). 

giving the quartets 

¢PHi + (P~I~ + (P2,T~,3 + (P2,k÷z,3, 

(~T171 ÷ ~7312 ÷ ~r,k'+"i, 1 ÷ ~01,k+l,l, (25) 

with cross vectors 

(406); (1, k + 3 , i ) ;  ( i , k + i ,  1), 

(202); (2, k+2, 3); (2k3). 

Finally, h~ and h 2 will also assume the values 

h ~ ' = - ( v +  hERp)Rp = 1 , k - l ,  1 

and 

h ~ ' = - - h 2 R ,  R q = 2/c3, 

giving the quartets 

(Pii.i + (Ojt[ + ~2k3 ÷ ~2k3, (26) 

(01i4 + (/7312 ÷ (Oi,~--T,1 ÷ ~0i,k-l,1, 

with cross vectors 

(406); (1, k + l ,  1); ( 1 , k - l , [ ) ,  

(202); (2k3); (2, k - 2 ,  3). 

An analysis of the terms in the pairs of quartets (24), 
(25) and (26) shows that considerations (a), (b) and (c) 
apply. In fact: 

- the term e 7 = 22,k+2, 3 in (24) is identical to e2 = 
e~,~-2,~ in (25); 

- the term e8 = el.k-~.i in (24) is identical to e~ = 
e~,k-7--~, i in (26); 

- as a consequence of the above identities also: 

2e :7  in (24) is identical to  2t~le 2 in (25), 

t6e 7 in (24) is identical to/~6e2 in (25), 

¼Ha(ET)e 6 in (24)is identical to ¼H4(E2)t 6 in (25), 

and 

2e2% in (24) is identical to 2818 2 in (26), 

ere 7 in (24) is identical to est ~ in (26), 

]H4(Ea)e 5 in (24) is identical to ]H4(E1)85 in (26). 

We can therefore conclude that the unique mag- 
nitudes in the first phasing shell contributing to the 
evaluation of the two-phase seminvariant (20) are 

{ B } I -  {IEH4 I, IE312 I, IE2k31, IEl ,  k+l , i I ,  IE20~1, 

1E4o61 }. 

3. The role o f  the s y m m e t r y  class  in the es t imat ion  o f  
two-phase  seminvar iants  o f  first rank 

The set of magnitudes of the first phasing shell for a 
two-phase seminvariant of first rank is defined by the 
symmetry class of the crystal. Two examples will 
immediately prove this statement and show how the 
proper use of symmetry can strengthen the estimate of 
the two-phase seminvariants. 

Let us first consider 

~D = ~123 + ~541' (27) 

which is a seminvariant of first rank in classes i, 2/m 
and mmm. From Table 1 we can see that in class i 
there is only one Dpq matrix of type (222), in class 2/m 
there are two Doq matrices of this type and in class 
mmm there are four such matrices, yielding, respec- 
tively, one, two and four pairs of quartets such as (9). 
The two-phase seminvariant (27) will be defined by: 

(1) 6 phasing magnitudes in class i: 

{B}~--= {IE1231, IE5411 , IE3321 , IE2dl , tE42[I, IE6641}; 

(28) 
(2) 10 phasing magnitudes in class 2/m: 

{Bit = {IEn3t, IE54~ I, IE3321, LE2dl, IE42~l, IE664 I, 

1E3121, 1E23~1 , IE6241 , 1E46~1 }; (29) 
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(3) 18 phasing magnitudes in class mmm: 

{B}I---- {1E123 l, IE54z l, 1E3321, IE2zzl, 1E422 l, 1E664 l, 

1E3121, 1E2311, 1E624 l, 1E4621, IE3311, 1E212 l, 

1E6621, [E4241, [E2321, IE3IlI, 1E464 l, 

1E6221 }; (30) 

and the statistical accuracy of its evaluation will 
correspondingly increase. 

As a second example let us consider 

0 = (ff123 q- ~0~, (31) 
which is a two-phase seminvariant in all the classes 
given in Table 1. We shall compare here the first 
phasing shells of (31) in the three classes i, 2 and mm2. 

In the first class there is only one Dug matrix of type 
(222) and • is defined by the six phasing magnitudes 

{B}~---- { 1E123 I, IE523 I, IE200 I, IE323 I, IE4001, IE6461 }. 

(32) 

In class 2 there is only one Dug matrix of type (202) and 
the first phasing shell is now 

{B}l------{ [Ez231, IE5231, IE4001, IE606 I, IE3k3 I, 

IE2,k+2,01 }, (33) 

where k is a free integer. Unlike in P i, the vectors h 2 
and h~ are not uniquely defined; • depends on the 
distribution of the independent magnitudes (usually 
several tens) on the two reciprocal-lattice rows (3k3) 
and (2k0). 

Finally, in class mm2, the most general Dug matrix is 
of type (200) [the use of the matrices of type (220) 
would in fact yield a subset of the phasing magnitudes 
obtained by means of the (200) matrix] and the first 
phasing shell is 

{ B } l -  { IE1231, IE523 I, [E400 I, IE60o I, IE3k/I, 

IE2,k+2,t+31 }, (34) 

where k and l are free integers. The vectors h 2 and hi 
now belong to the two reciprocal-lattice planes (3kl) 
and (2kl) and from these we select the independent 
terms (usually several hundreds) forming the phasing 
magnitudes of O. 

The number of phasing magnitudes of the first shell 
of q~ thus increases by an order of magnitude on going 
from one class to the other and the estimate becomes 
more and more accurate in a statistical sense. 

4. Use of the estimated cosines and enantiomorph 
discrimination 

If cos(tPu + cp,,) or cos (~Pu- ~Pv) is reliably estimated and 
Cpv is a known phase then there is, for noncentro- 
symmetric reflexions, a sign ambiguity for tp,,. 

A more favorable condition occurs for space groups 
belonging to symmetry class 222 (cf. proposition 7, 
paper III), for which one is able to obtain information 
about both cos(cp, + q70 and cos(~pu - ~p,,). 

If we assume that c I and c 2 are equally accurate 
estimates of cos(~pu+ cp,,) and cos(~p,-tpv), respec- 
tively, we have as particular cases: 

(a) e I ~ 1, e 2 ~ 1 giving (~Ou, ~ov) ~- (0,0) or (n, n) 

(b) el ~- - 1 ,  c 2 _~ - 1  giving (tPu, q~v) -~ (0, n) or (n,O) 

(c) c 1 ~ 1 , c 2 ~ - 1  giving 

(d) c 1 ~ _ - l , e  2_~1 giving 

or - - ~ ,  

2 '  
(35) 

The last two cases are particularly important because 
~p,, + cpv and ~Pu - ~Pv can both be assigned simul- 
taneously in order to fix the enantiomorph. 

Examples will be given when discussing the actual 
applications (cf. Table 8). 

5. Some practical tests 

A computer program has been implemented which can 
generate the two-phase seminvariants of first rank in all 
space groups up to orthorhombic and, by means of the 
algorithm described above, can define the correspond- 
ing magnitudes of the first phasing shell. 

The evaluation of the two-phase seminvariants is 
performed, for centrosymmetric space groups, by 
means of a sign probability distribution of the type 

P + = ½  + ½tanh (ARG), (36) 

while for noncentrosymmetric space groups the for- 
mula 

I~(G) 
(cos O)  - - -  (37) 

Io(G) 

was used, with G = 2 × A R G .  
In both (36) and (37) the value of A R G  is defined as 

Y Apq 
(P,q) 

A R G  - , (38) 
1+ E C,q 

(P,q) 

where 

1 
Avq-  IEaE41 ~' ajAj (39) 

2N j 
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and 

C,q- 

with 

1 
2N {est4(es + t6) + (es + e'4)Z'bJ + Z '  rj}, (40) 

J J 

a = e~ + ~2 + ~581 + e6~2 + 2~162 ( 4 1 )  

A = cos {2x(hlT p -- hETq)} , 

b = ele 2 (42) 

r =  ~{H4(E,)c 5 + Ha(E2)e6 } 

for centrosymmetric structures, or 

r =  ¼{La(E1)8 5 + L4(E2)Q} 

for noncentrosymmetric structures. 

The summation in (38) is over all matrices D#q 
contributing to the first representation of the given 
seminvariant. The summations over j in (39) and (40) 
are over all pairs (hi,h2) and the primes indicate that 
duplicated contributors have been included only once. 
The numerical indices of the terms e and E refer to the 
order of appearance in the six-variate distribution (18). 
All other terms have the same meaning as in paper III. 

G as used in (37) differs from Q which appears in 
(111.56); in fact, the general definition given in (III.54), 
for space groups up to orthorhombic, reduces to 

~.tAj,p,q 
I E3E41 (p,q) J 

Q - - -  , (43) 
N ~.. ~..' (1 + Cj, p,q/N) 

(p,q) J 

Aj.p,q and Cj.p,q being single contributors to (39) and 
(40). Equation (43) differs from (38) in the 
denominator; the modification is an empirical one and 
it was introduced after noticing that, in practice, quite 
often some of the terms C~ in (III.47), and consequently 
in (III.55) and (III.56), become negative. A negative Cj 
gives too high a weight to the corresponding term in the 
summation. Re-setting all negative Cj's to zero did not 
completely eliminate this problem and the empirical 
modification given in (38) proved to be most suitable. 

The method was tested on 13 known structures of 
different complexity covering all different symmetry 
classes of the first three crystallographic systems. 

Table 2 shows the reference and the most relevant 
features of the test structures whose results are 
discussed in this paper. 

In Table 3 the 20 two-phase seminvariants with 
IARGI > 1.0 (P+ > 0.891 or P+ < 0.109) for TETRA 
(N = 34, P 1) are given. It is remarkable that a negative 
two-sign product (No. 11 in the table) has been 
correctly evaluated. Only the last two relations are 
incorrectly estimated as positive. Among the 50 
relationships with I ARGI > 0.75 (P+ > 0.818 or P+ < 
0.182) there are seven wrong indications all incorrectly 
estimated as positive while in fact negative. On the 
other hand the five negative_indications are all correct. 

The present results in P 1 confirm those obtained by 
Giacovazzo (1978) on a model structure with N = 40. 
It is interesting to compare the estimates obtained via 
the first representation with those obtained from the 
probability distribution P ( E h :  Ell:  Eh,+h: Eht-h2) 

Table 2. Abbreviations, references, space groups, formulae, types of normalized amplitudes (obs. meaning IEI's 
computed from the observed intensities and calc. IEI's calculated from the atomic coordinates) and minimum 

values of lEt for the reflexions forming the two-phase seminvariants,for the 13 test structures 

TETRA: tetrabenzyltetrazine 
KENNA: 3-methyl-mono-o-benzyl- 

autumnaline 
PIC RY: 2,2-diphenyl- l-picrylhydrazyl 

(DPPH modification) 
RIBO: 1,2,3,4-tetra-o-acetyl-a-D- 

ribopyranose 
HEPTA: heptahelicene 

DIMER: dimer from l-phenyl-3,3- 
biphenylene-allene 

METHOX; (+)-3-methoxy-7-nor-9p-estra- 
1,3,5 ( 10)-trien- 17-one 

PANBE: p-nitrobenzoic acid 

TOLY: tolypomycinone 

TOXE: fusicoccin A's aglycone 

KARLE: photolysis product 
AZET: 3-chloro- 1,3,4-triphenylazetidin- 2- 

one 

PERYL: tetrabenzo[ a,cd,j, lm]perylene 

Space 
Reference group Formula Z E Eml" 

Spagna & Vaciago (1978) Pi Cs0Ha2N 4 1 obs. 1.9 
Shakked & Kennard (1977) Pi C30HsTNO 5 2 talc. 2.0 

Kiers, de Boer, Olthof & Spek PI C~sH~2NsO 6 4 calc. 1.4 
(1976) 

James & Stevens (1977) P21 C13H180 9 4 calc. 2.0 

Beurskens, Beurskens & P2~ C30Hls 4 calc. 1.9 
Van den Hark (1976) 

Dreissig, Luger & Rewicki Cc C42H2s 4 talc. 1.8 
(1974) 

Hanson & Nordman (1975) P21/c CIsH2202 4 calc. 1.8 

Colapietro & Domenicano A2/a CTHsNO 4 8 obs. 1.7 
(1977) 

Brufani, Cellai, Cerrini, Fedeli & P21212 ~ CsTH43NO~s 4 obs. 1-85 
Vaciago (1978) 

Cerrini, Fedeli, Gavuzzo & P2~2t2~ C21H35Os 4 obs. 1.95 
Mazza (1978) 

Karle, Karle & Estlin (1967) P21212 ~ CI2HlaNO4 4 obs. 1.2 
Colens, Declercq, Germain, Pca2~ C2~HIsC1NO 8 obs. 1.6 

Putzeys & Van Meerssche 
(1974) 

Kohno, Konno, Saito & Inokuchi Pcab Ca4H~s 8 calc. 2.6 
(1975) 
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derived in two different ways by Giacovazzo  (1974) 
and Green & H a u p t m a n  (1976). Fig. 2 of  the first 
paper  and, in more  detail, Table  1 of  the latter, 
computed  for a model structure with N = 90, show how 
the four-magnitude formulae can also predict negative 
two-sign products.  Table 1 of  Green & H a u p t m a n  
shows at the top (relationships 8 and 9) two wrong 
positive indications.  Our  results by means  of  the six- 
variate distribution, suggested by the representat ion 
theory,  for T E T R A  as well as for K E N N A  (N  = 72, 
P1 )  and P I C R Y  (N  = 110, P [ ) ,  seem to make  this 
problem less critical in the sense that  the incorrect  
positive indicat ions occur  at ra ther  low values of  the 
probabili ty.  As we have seen in §3,  two-phase 

Table 3. TETRA: indices, IEI's and actual signs of the 
reflexions forming the two-phase seminvariants, to- 
gether with the computed argument of the hyperbolic 
tangent formula (3 6) and the corresponding probability 

The asterisks indicate incorrect evaluations. 
u E.  su v E, sv ARG P, 

1) 4 0 5 2 . 7 0  + 
2)  6 -7 -5 2 . 1 3  + 
3) 2 4 -7  2 . 0 8  - 
4) 4 -3  4 2 . 3 0  - 
5) 1 -2  -5 2 .21  - 
6)  0 0 3 2 . 2 6  + 
7) 1 0 9 2 .39  + 
8)  2 -2  3 2 . 3 8  - 
9)  5 -7 -1 3 .76  + 

10) 4 -7  1 2 . 7 6  + 
11) 7 - 4  - 4  2 . 7 1  - 
12) 3 5 4 3 .56  - 
13) 1 5 8 3 . 2 8  - 
14) 5 -10  0 2 .50  + 
15) 4 -7  1 2 . 7 6  + 
16) 2 -3  11 3 .21 - 
17) 5 -5 0 3.11 - 
18) 8 -1 -1 3 .13  - 
19) 5 -6  2 2 .90  + 
20) 6 -6  - 3 "  1 .94  + 

6 0 -3  2 . 6 4  + 1 .33  .935 
4 -7  5 1 .93  + 1 .32  .933 
4 4 -11 1 .90  - 1 .27 .9~-7 
2 -3  8 1 .92 - 1.25 .924  
3 -2  -9  2 .18  - 1.25 .924  
2 0 -7  2.11 + 1 .24  .923 
1 - 4  7 2 .07  + 1 .20  .917 
4 -2  -1 2.01 - 1 .19 . 9 | 5  
5 1 3 2 . 7 5  + 1.18 .914 
6 -7 -3  1 .97 + 1 .17  .912 
5 -10  0 2 .50  + - 1 . 1 5  .091 
1 5 8 3 .28  - 1.15 .90¢ 
I -9 6 2 .83  - 1 .14 .907 
5 0 0 1.95 + 1 .12 .904  
6 1 1 2 .37  + 1 .1o  .9o0 
6 -11 -1 3 .10  - 1 .07 .895 
5 5 2 2.1,3 - 1 .07 .895 
2 3 -3  2 . 2 3  - 1 .06  .803 
7 - 4  - 4  2 .71 - 1 .o5 .891 ° 
6 - 4  1 1.91 - 1.05 .$91 ~ 
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seminvariants  in class i have only six magni tudes  in the 
first phasing shell and therefore their estimate becomes 
less accurate  as the number  of  a toms in the unit cell 
increases. This is confirmed by the trend of  our results, 
giving for K E N N A  22 two-phase seminvariants  with 
IARGI _ 1.0, but for P I C R Y  only four such relations, 
in both cases all correctly indicated as positive. The 
first wrong indicat ion for K E N N A  is a positive 
estimate with A R G  = 0.95 and for P I C R Y  is a positive 
estimate with A R G  = 0.92.  

In this class we believe that  the use of  upper 
representations and, in the case when both ~0u and ~0v 
are of  the type (e,e,e), the use of  the magnitudes in the 
first phasing shells of  the one-phase seminvariants  
should also improve the estimates for rather  large 
structures. Work  in this field is in progress. 

In Table 4 the results of  our  calculat ion for H E P T A  
(N = 120, P21) are shown. The first three indications 
are cent rosymmetr ic  pairs (i.e. relations in which both 
phases have restricted values) with IARGI > 0.8.  
They are all correct  and it is our  experience (cf. also 
Tables 7, 8, 9) that  these indicat ions are also correct  
in almost  all cases when we consider values of  IARGI 
as low as 0.6.  In the table are also given the 15 general 
two-phase seminvariants  with IGI > 1.0. All cosine 
signs are correct,  and the average phase error is 
( I A ~ 1 ) = 3 7  °. 

For  RIBO (N = 88, P21), which is a smaller 
structure, in the same space group, we have obtained 
better estimates. In fact, for the 16 general two-phase 
seminvariants  with I G I _> 1.0 the average phase error 
is ( I A O I ) =  22 °. 

Table  5 shows the 28 estimates of  the general two- 
phase seminvariants  with G > 1.0 for D I M E R  (N = 
88, Cc) (the C centering posit ions were not  considered 

Table  4. HEPTA: centrosymmetric pairs given as in Table 3; values of G, the calculated cosine, the true cosine, 
their absolute difference and the absolutephase error IAOI = I cos -1 (cos O)e -- cos- I  (cos t2B)t[ of the estimate (o) 

Jbr the general two-phase seminvariants 

u E,, ¢Pu v Ev  q~v 
(1) 5 0 7 3.03 180 1 0--5 2.81 0 
(2) 11 0 0 2.66 0 7 0 2 1.93 180 
(3) 6 0 7 4.02 180 10 0--5 2.30 0 

G 

(1) 3 2 1 3.00 -153 5 2 7 2.22 -171 2.36 
(2) 6 7 - 6  2.60 170 8 7 6 2.10 -57  -1.58 
(3) 12 2 1 2.38 -152 14 2 1 2.10 -158 1.50 
(4) 3 7 - 6  2.34 158 1 7 - 6  2.09 142 1.44 
(5) 3 2 0 2.90 23 11 2 0 2.36 16 1.43 
(6) 6 9 - 6  2.02 160 2 9 6 1.90 -16 -1.26 
(7) 911 1 2.37 17 3 I1 1 2.05 -8  1.25 
(8) 9 7 1 3.60 -28 11 7 1 2.69 -18 1.24 
(9) 3 2 7 3.00 -153 7 2 7 2.37 -143 1.19 
(10) 3 11-1 2.24 145 5 11 1 1.98 11 -1.18 
(11) 11 4 0 1.99 66 11 4 2 1.95 -134 -1.18 
(12) 8 7 6 2.10 -57 4 7 8 2.05 153 -1.16 
(13) 0 6 7 2.71 -171 10 6 7 1.95 -138 1.14 
(14) 5 9 6 2.08 -28 5 9 - 8  1.93 0 1.04 
(15) 6 5 - 6  2.46 126 2 5 6 2.12 -57 -1.04 

ARG P+ 
-1.22 0.080 
-0.86 0.152 
-0.82 0.162 

(cos ~)c (cos ~)t IA(cos ~)1 hd~l 

0.748 0.951 0.203 24 
---0.610 --0.682 0.072 5 

0.591 0.995 0-404 48 
0.576 0.961 0.385 39 
0.573 0.993 0-420 48 

--0.527 --0.998 0.471 55 
0.524 0.906 0.382 33 
0.521 0.985 0.464 49 
0.507 0.985 0.478 50 

--0.503 --0.695 0-192 14 
---0.503 --0.940 0.437 40 
---0.497 ---0.866 0-369 30 

0.491 0.839 0.348 28 
0.459 0.883 0.424 35 

--0.459 --0.999 0-540 60 
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as they only determine the absent  reflexions, which 
were not  included among the phas ing magnitudes).  
There are no cent rosymmetr ic  pairs, but  this is not 
surprising in symmet ry  class m. Three est imated 
cosines (marked with an asterisk) show an incorrect  
sign" the 2nd, 9th and 22nd. Nevertheless,  the average 
phase error is (IAq~I) = 33 °. 

For  both test  s tructures in class 2/m, M E T H O X  ( N  
= 80, P2~/c) and P A N B E  ( N  = 96, A2/a), all the 
est imates with I A R G I  > 1.0 are correct, and Table 6 
shows an analysis  of  the number  of correct  sign 
indicat ions for different limits of  the argument  of  the 
hyperbolic  tangent  in (38). 

In Table 7 the results for K A R L E  ( N  = 68, P2~212 ~) 
are reported. Debaerdemaeker  & Woolfson (1972) (D 
& W), in their paper  on the extension of the coincidence 
method to noncen t rosymmet r ic  structures, have also 
used this compound  as a test s tructure and a direct 
compar ison of  the two methods is therefore possible. 

As far as the cent rosymmetr ic  pairs are concerned,  
in Table 7 there are four correct  indications,  while in 
Table 1 of D & W, of  the four relationships of this type 
(only the first is in common  with our list) one is 
incorrect;  this part icular  seminvar iant  is also incor- 
rectly evaluated by our method,  but  with A R G  = 0.62,  
and this is one of only two cases for which we have a 
wrong indication with I A R G I  > 0.6 for centrosym- 
metric pairs in all the noncen t rosymmet r ic  structures 
we have considered. 

The compar ison  of the results for the general  two- 
phase  seminvariants  shows in a clearer way  the 
advantage  of  the representat ion method over the 
coincidence method.  

The total  average phase error for the top 52 relations 
with smallest var iance given in Table 1 of D & W is 
( I A ~ I )  = 48 °, while it is ( I A ~ I )  = 32 ° for the 105 

relations with I GL > 1.0 shown in Table 7 [four 
relations, for which both cos(~0~ - ~0v) and cos(~0,, + ~0v) 
were evaluated,  have been grouped together].  More-  
over, of  the 52 coincidences given by D & W, 30 are 
not present in our list, and the average phase  error for 
these relations, as evaluated by  the coincidence method,  
is rather large ( I A ~ I ~  = 55 °. Also, for the 22 
seminvariants  in common  (the order of appearance  in 
the two lists is completely different) there is an 
improvement  in their est imate:  the average phase error 
reduces from 39 to 33 ° . These results show the ability 
of the representat ion method not  only to give better  
estimates for the two-phase seminvariants ,  but also to 
take care of  most  of the bad estimates obtained by the 
coincidence method,  by  assigning them low I GI values. 

When  we group the relations given in Table  7 in 
different intervals of  increasing L G I we have: 

Interval  NR ( I A ~ I )  

1 .0 -1 .5  37 38 ° 
1 . 5 - 2 . 0  25 36 

> 2 . 0  43 23. 

Table 5. DIMER: general two-phase seminvariants given as in Table 4 

The asterisks indicate the cosines for which the sign is incorrectly evaluated. 

u Eu ~o~, v Ev 

(1) 13 17-3 2.34 --7 13 9--3 2.07 
(2) 0 8 3 2.00 -2  010 3 1.98 
(3) 3 1 -8  1.99 88 3 3--8 1.84 
(4) 8 2 - 8  2.18 -161 8 0--8 2.03 
(5) 010 2 2.19 -101 0 4 2 1.84 
(6) 012 5 2.14 -18 014 5 1.91 
(7) 1 17 -5  1.88 144 1 11 --5 1.83 
(8) 8 14 2 2.12 --60 8 20 2 2-07 
(9) 10 4 4 2.53 88 10 2 4 1.85 
(10) 14 16-6 1.90 --149 14 14-6 1.83 
(11) 10 0 4 3.50 --18 10 2 4 1.85 
(12) 8 14-4 2.66 6 8 16--4 1.81 
(13) 14 0 - 6  2.59 -129 14 6 - 6  1.90 
(14) 6 0 - 8  2.56 85 6 2--8 1.89 
(15) 7 15 1 2.94 48 7 13 1 1.84 
(16) 9 19-2 2.44 169 9 11 -2  2.00 
(17) 13 1 -3  2.20 -173 13 9--3 2.07 
(18) 18 2 - 4  2.80 -157 18 0 - 4  2.43 
(19) 3 1 1 2.45 172 3 19 1 1.85 
(20) 13 17-3 2.34 -7  13 1--3 2.20 
(21) 012 5 2.14 -18 016 5 1.88 
(22) 14 0--6 2.59 -129 14 16 -6  1.90 
(23) 9 19-2 2.44 169 9 1 -2  2.26 
(24) 3 1 -7  2.02 -165 3 5 - 7  1.90 
(25) 3 1 -7  2.02 -165 3 7 - 7  1-91 
(26) 15 3 - 5  2.95 -114 15 1 -5  1.82 
(27) 1 13 5 2.00 10 1 17 5 1.87 
(28) 15 3 - 1  2.37 -38 15 13-1 1.84 

~0v G (cos ¢')c (cos ¢0, IA(cos ¢~)1 Izlq~l 

168 -3.54 -0.839 -0.996 0.157 28 
64 -3.00 -0.810 0.407* 1.217 78 

-150 -2.95 -0.806 -0.530 0.276 22 
-4  -2.92 -0.804 -0.921 0.117 14 
48 -2.76 -0.791 -0.857 0.066 7 

134 -2.49 -0.764 -0.883 0.119 12 
-40 -2.10 -0.711 -0.998 0.287 41 
170 -2.09 -0.710 -0-643 0-067 5 
177 -1.88 -0.673 0.017" 0.690 43 
32 -1.84 -0.666 - 1.000 0.334 48 

177 -1.84 -0.666 -0.966 0.300 33 
-147 -1.82 -0.662 -0.891 0.229 22 

86 -1.69 -0.635 -0.819 0.184 16 
-99 -1.64 -0.624 -0.998 0.374 48 

-113 -1.63 -0.622 -0.946 0.324 33 
-7  -1.61 -0.617 -0.998 0.381 48 
168 1.51 0.594 0.946 0.352 35 
-4  -1.43 -0.573 -0.891 0.318 28 
38 -1.43 -0.573 -0.695 0.122 9 

-173 -1.42 -0.571 -0.970 0.399 41 
164 -1.42 -0.571 -0.999 0.428 53 

-149 -1.36 -0.555 0.940* 1.495 104 
144 1.34 0.550 0.906 0.356 32 
69 -1.33 -0.547 -0.588 0.041 3 
35 -1.23 -0.518 -0.940 0.422 39 
-6  -1.22 -0.515 -0.309 0.206 13 
25 1.12 0.485 0.966 0.481 46 

173 -1.11 -0.482 -0.857 0.375 30 
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A comparison of  this table with Fig. 2 of  D & W, where 
for the range of minimum variance ( J A i l )  ~_ 32 °, also 
illustrates the improvement obtained by our method. 

In Table 7 only four seminvariants (3, 25, 42 and 61) 
have both c o s ( ¢ u -  Cv) and cos(¢u + ~0v) estimated with 
I GI ___ 1.0; the actual values of  the phases, for the 
relations 25, 42 and 61, approximately comply with the 
deduction of  case (d) in § 4, while for the seminvariant 
3, for which cos(¢u--~0v) is incorrectly evaluated as 
negative, the true phases contradict the deduction of  the 
indicated case (b) of  § 4. 

More favorable, in this respect, are the results 
obtained for T O X E  (N  = 108, P2~212~) shown in 
Table 8, where only the 12 seminvariants for which 
both cos(~0, - ~Ov) and cos (~o8 -- ~&) are evaluated with 
I GI > 1.0 are given, together with the seven centro- 
symmetric pairs with I ARGI > 0.8.  The last column 
shows how the deductions of  § 4 are complied with 
quite well for all but one case. For T O X E  we have 
estimated 58 two-phase seminvariants with I GI > 1.0 
and the average phase error is ( I A ~ I )  = 34 °. The 
results for TOLY (N  = 104, P2~2~2~) are similar; we 
have correctly estimated 13 centrosymmetric pairs with 
I ARGI ___ 0.8  and the average phase error for the 33 
general seminvariants with I GI > 1.0 is 32 °. All five 
cases for which both cos(¢u - ~0,) and cos(~0u + ~0v) are 
given agree with the deductions of  § 4. 

The results for A Z E T  (N = 384, Pca2~), given in 
Table 9, qualitatively prove the arguments of  § 3. In 
fact, some of  the values of I G I are very large and they 
correspond to the cases in which the first phasing shell 
is defined by Dpq matrices of  type (200) or (020) and it 
includes several hundred magnitudes. The 13 centro- 
symmetric pairs with IARGI > 1-0 are all correctly 
evaluated and the average phase error for the 44 
general two-phase seminvariants with I GI > 1.0 is 
( I A ~ l ) = 3 1  ° .  

Finally we quote the results for PERYL ( N  = 2 7 2 ,  

Pcab): of  the 23 two-sign products with I ARGI > 1.0 
only the last is incorrectly evaluated. 

Table 6. The number of two-phase seminvariants and 
the percentage of correct estimates for different limits 
of the argument of the hyperbolic tangent formula (36), 
for two test structures in class 2/m (METHOX and 

PANBE) 

M E T H O X  P A N B E  

A R G  NR % correct NR % correct 

0.4 277 76.5 201 80.6 
0.6 139 83.5 118 94.1 
0.8 73 91.8 86 96.5 
1-0 30 100.0  53 100 .0  
1.2 11 100.0  27 100.0  
1.4 6 100.0  5 100.0  
1.6 3 100.0  
2.0 1 100.0 

6. Concluding remarks 

The results of  §5  indicate that the use of  the 
representation theory allows those magnitudes to be 
defined which are most effective in determining, in a 

probabilistic way, the values of  the two-phase semin- 

Table 7. KARLE: centrosymmetric pairs and general 
two-phase seminvariants given as in Tables 4 and 5 

The column 'type' indicates whether the estimate is for cos (~o. - ~o~) 
or cos (~u  + q'v). 

u E. Cu v E, 
i ) 5 4 0 2.31 90 i 2 0 1.44 
2) ~ 2.3, 9oO 6 o 1.,~ 3, ~ °1 .63  ~ . . . . .  
4) 0 S 7 2.44 -90 0 ~ 7 2.16 

1) 4 5 5 2.13 2'I ~ I  1.95 
2.31 3) 

4) 0 5 7 2.44 
5) ! 2.23 
6) : ~ . . . . .  5 
7) 2 1 13 1.42 
8) 6 4 1 1.93 
9) 4 5 7 2.22 

10) 4 2 12 1.74 
11) 5 4 12 2.19 
12) 1 14 1.53 
13) 8 4 6 1.93 
14) 1 4 14 1.92 
15] 8 1.40 
16) 2 : ~ 1.98 
17) ~ 2.01 
18) o' ,~1 2.60 
19) 2 5 12 1.87 
20) 1 3 12 1,68 
21) 0 0 12 2.43 
22) 8 6 2 1.~6 
23) 2 6 8 2.18 
24) 6 3  5 1.31 
25) 2 5 7 1.52 

26) 1 3 12 1.68 
27] 5 4 14 2.08 
28) 5 6 4 1.51 
29) 12 1.69 
3o) 73 I ,135 
31) 7 4 7 1.95 
32) 4 4 13 1.57 
33) 6 S 12 1.88 
34) 2 1.51 
3 . 2  I ~ 2 1 8  
36) 5 4 13 1.59 
37) 0 2-35 
38) ~ 2 '~ 1.89 
39) 8 2.23 
40, ~ o' ; i .69  
41) 5 4 1.45 
42) 2 3 14 1.29 

43) 2 18 1.63 
44) 0 4 1.36 11 

45)~o 3'1,' 188 
46) 2.05 
47) 1 6 15 1.52 
48'~o I . . . .  50 
49) 10 1.34 
50) ~ 2.13 51) ,~ 56, 152 
52) 1 0 1.60 
53) 8 2.51 
54) ,~ ~ . . . .  3 
55) 8 4 3 1.40 
56) I 1 14 1.53 
57) 0 4 12 1,46 
58) 0 6 10 1.35 
59) S 4 0 2.31 
60) 1 4 6 1.26 
61) 2 3 5 1.38 

62) 1 2 14 1.47 
63) I 2 2 1.42 
64) I 4 9 1.32 
65) 4 4 8 2.51 
66) 2 6 15 1.62 
67) 4 4 o 2.51 
68) 0 1.63 
69) 24 1 1 5  1.98 
70] 2 4 2.09 
71) 72, ~ :1~  24o1"33 
73] 2 2 14 1.85 
74) 1 o ~ 1.48 
75) ,6, ~ ' 1: 1:o'; 
77) 6 6 2 1.46 
78) 4 • 7 2.22 
79) 6 1.88 
80) 2 I 4 1 4 1 . 8 9  
8,) o  ̀ 0 ~235 
82) 5 2.44 
83) 0 2.16 
8 . 2  1 1 ;  , , 3  
86)85'6 1 71.782.31 

87) 4 4 8 2.51 
88) 2 1.53 
89) 2 1 9 1.94 
90) 8 5 o 2.91 
91) 4 2 0 2.54 
92) 2 5 12 1.87 
93) 4 5 7 2.22 
9 4 ) ~  2 ~ , . 8 9  
951 4 1.76 
96) ~ ~ I~ 12"19.52 
97) 
98) 2 1 13 1.42 
99) 4 6 10 1.31 

1°°) ~o ' , I  ' "5 
1.83 101) 

94 0 3 5 1.36 

-35 74 ~ 1 11"36.23 
-173 

-90 4 3 7 1.35 134 
160 6 2 1 1.39 -30 

o 4 2 14 1.37 165 
108 6 3 13 1.40 14 
155 2 2 1 1.53 -14 
-93 0 3 7 2.16 90 
-25 o 4 12 1.46 180 

-128 1 2 12 1.65 67 
178 34 ~ 1~ 1 . 3 0 - 1 4 0  
92 1.35 -40 
93 5 6 14 1.29 -171 

-116 6 1.30 12 ~ 2 ~ 36 1.54 95 
1~ 8 ~  7 182 74 
- 4 15 1 .24  -75 

52 2 3 12 1.38 -46 
162 5, I . . . .  65 1 

180 12 1.74 -25 
89 4 4 2 1.23 -162 

170 6 ~  ~ 1 4 7  50 
46 2 1.21 88 

-102 2 3 7 1.51 64 

-162 3 1 12 1.52 42 
30 1 2 14 1.48 -147 
94 1 4 4 1.41 -109 

174 , ~  12 :~  28 
87 3 1 -57 

,77 o3~ 1; 33 18 
.5o 18o -20 

164 2 3 12 .38 -46 
64 6 I ~ . . . .  8, 

170 2 1.76 19 
178 1 6 13 1.52 -52 
90 ~ 2  ~ 1 8 2  74 

-179 4 1.26 71 
o 4 6 8 1.99 151 

90 4 2 7 1.43-32 
-140 I 6 7  1.25 88 

147 2 5 14 1.26 -1Ol 

-161 2 2 18 1.43 16 
o 4 4 i1 1,36 -154 

158 2~  ~138 ,2 
90 4 i 1.39 -13 

151 5 4 15 1.42 -13 11o~ 2 I 14 126 . . . .  
4 10 1.26 171 

9 4 ~ :  i . . . . . .  34 
151 1 1.26 140 
180 5 2 1.37 035 

16 0 2 8 2.05 180 
160 2 2 l 1.53 -14 

-116 4 2 3 1.38 40 
178 3 3 14 1.22 49 
180 4 6 12 1.30 - t46  
18o , ,  . . . . .  6 171 
90 14 2.08 30 
71 3 6 6 1.22 -81 

-89 2 5 5 1.21 88 

147 3 ,  . . . . .  6 62 
-22 3 4  2 1.36 -147 
143 3 2 9 1.24 -124 

16 0 4 8 2 .23 0 36 2 ~ ~ 1 5 3  14 
16 4 1.99 151 
o ~ ~1~  1.39 -13 

-12 1.81 -147 
-141 6 4 4 1.88 -158 

118 1 6 7 1.25 88 
-22 2 4 1 2.23 160 
169 2 6 o 1 , 2 4 1 8 0  
-90 1~, 1~ 1.47-147 

16 2 2.18 170 
30 5 6 14 1.29 -171 

129 6 2 12 1.20 -64 
-93 4 3 7 1.35 134 

158 66,  ~ 1 3 2  28 
-56 2 I 1.38 -73 
90 1 4  ~ . . . . .  48 

-90 2.13 94 
1~ , 6 3 : 1 8 ,  11 

- 1.77 24 
-91 1.42 -32 

-173 ~ 'Ol.63 
16 6 4 8 1.47 -50 

131 2 3 7 1.51 64 
-100 2 5 14 1.26 -I01 

0 4 5 2 1.43 154 
180 4 2 14 1.37 165 

52 2 5 I0 1.48 149 
-93 6 5 7 1.49 -81 

.179 ~ 2  ~1.37-35 
19 4 1.47 -50 

_128 ~ 1~ 208 30 
- I 0 2  1.49 -81 

108 2 I 15 1.38 -73 u÷~ 
35 4 4 io  1.26 171 u-v 

-14~0 3 :  7 1 . 3 3  118 u+v 
1.40 -116 u-v  

~Pv ARG 
-90 -1.65 
-90 -1.48 
180 -1 .13  
90 - .98 

Type G (cos ~)c 
-90 u . . . .  4.04 - .856 
95 u-v  -3.57 -.84O 

-85 u-v  -3.18 -.8~1 
u÷v - I . O I  - .449 
u-v  -3 .13  - .818 
¢-v -3.09 - .816 
u-v -2.99 - .809 
u-v -2 ,94 - .806 
u-~ -2.88 -.801 
u-~ -2.80 -.795 
u-v  - 2 . 7 7  - .792 
u-v -2 .57 - .773 
u-v 2.51 .766 
u-*  -2.49 - .764 
u-v -2.46 -.761 
u-v -2.46 -.761 
u-v -2.43 - .759 
u-v -2.41 - .755 
u - ,  2.39 .752 
u+v 2.39 .752 
u-*  -2.37 - .750 
u-~ -2.36 - .748 
u-C -~.35 -.747 
u-~ -2 .34  - .746 
u - ,  -2 .34 - .746 
u+~ 2.34 .745 
u-v  -1.50 - .590 
u÷* -2.29 - .740 
u-v -2 .26  - .735 
u-v -2 .22  - .729 
u~v -2.21 - .727 
u- .  -2 .20  - .726  
u-~ -2 .19 - .725 
u-v -2 .17  - .722 
u-v -2 .16 -.721 
u-v -2 .14 - .718  
u+, -2.07 - .707 
u-v -2.07 - .706 
u-~ -~.07 - .706 
u-~ -2.O6 -.705 
u-~ -2.05 - .703 
u-~ -2.04 - . 7 0 2  
v- .  -2 .02 - .698 
u÷v 2.02 .699 
u-v - I . 3 6  - .555 
u+v -2 .00 - .694 
u-v -1.98 - .69z 
u - ,  - i . 9 7  - .690 
u-~ -1.97 - .69o 
u-v -1.97 - .69o 
u-v -1 .96 - .688 
u-v -1.93 - .682 
u- 7 -1.93 - .682 
u÷.  1.91 .679 
u-~ -1 .86  - .669 
u - ,  -1 .84 - .666  
u+v - i . 8 o  - .657 
u-v - I . 7 7  - .652 
u+v - I . 7 3  - .644 
u-v -I.7O - .637 
, - v  -1.69 - .635 
u-v 1.68 .633 
u+~ 1.68 .633 
u+ '  1.66 .628 
u-v -1 .26  - .528 
u+v 1.61 .618 
u+v 1.58 .611 
u+~ 1.56 .606 
u-v 1.52 .597 
u-v 1.52 .596 
u-v -1.50 - .592 
u - ,  1.41 .567 
u-v  - I . 4 0  - .564 
u-v 1.38 .560 
u÷v 1.38 .560 
u÷v - I . 3 8  - .559 
u-~ 1.35 .553 
u-~ 1.30 .540 
u - ,  -1 .23 - .520 
u-~ -1 .22  - .515 
u÷v 1.22 .515 
u-v - i . 2 1  - .512  
u-v  -1 .18 - .503 
u-v 1.16 .498 
u-v  1,16 .497 
u-v - I . 1 4  - .490 
U-V 1,13 .487 
u-v 1.13 .487 
u-v 1.11 .482 
u-~ 1.09 .476 
u+v 1.09 .475 
u+v -1 .09 - .475 
u-v  1.08 .472 
u-v 1.07 .469 
u-v 1.07 .468 
u+v -1.07 - .468 
u+,  -1 .o4 - .459 
u- *  -1 .03 - .458 
u-~ 1.03 .457 
U+V 1.02 .454 
u+~ - I . 0 2  - .453 

1,01 .450 .819 
-1.Ol - .450 - .719  

1.00 .447 .927 
1.00 .445 - .438 ° 

P +  

.036 

.049 

.094 

.123 

(cos 0)1 JA(cos ~)p IA~l 
-.998 .142 28 
- .643 .197 17 

.035 ° .856 57 
- .208  .241 I$ 
- .719 .099 9 
- .985 .169 25 
- .966  .157 21 
- .070 .736 50 
- .982  .181 36 
- .999 .204 35 
- .906 .114 13 
- .966 .193 24 

.743 .023 
- .669 .095 
-.105 .656 44 

• 174 ~ .935 60 
-°292 .467 32 
- .743  .012 

.9fi6 .214 2 

.995 -243 36 
- .956 .206 24 
- .906 .158 17 
- .326 .421 29 
- .766 .020 

.743 ° 1.489 91 

.788 .043 ,I~ 
- .970 .380 
- .500 .240 18 
- .999 .264 dO 
-.921 .192 20 
- .829 .102 
- .809 .083 
- .966 .241 29 
- .940 .218 24 
- .866 .145 1~ 
- ,819  .1Ol 
- .988  .281 36 
- .643 .063 5 
- .961 .255 29 
- .342 .363 25 
- .875 .172 16 
- .530 .172 1~ 
- .669 .029 

.695 .004 0 
- .375 .180 12 
- .819 .125 11 
- .899 .208 20 
- .985 .295 36 
- .225 .465 31 
-.961 .271 30 
- .829 .141 13 
- .988 .306 38 
- .669 .013 1 
• 358 .321 22 

-,819 .150 13 
- .961 .295 32 
- .829 .172 15 
- .914  .262 25 
- .682 .038 

• R:9* 1.466 9~ 
.988" 1.623 121 
.500 .133 9 
.985 -352 41 

1.000 .372 51 
- .999 o471 56 

.087 .531 33 
- .982  ~ 1.593 117 

.946 .340 34 
• 961 :364 37 
• 927 .331 3~ 

- .707 .115 
• 974 .407 

- .707 .143 
• 956 .396 39 

- .899 ~ 1.459 98 
" .743 .184 14 

• 982 .429 46 
• 545 .005 0 

- .899 .379 
- .934 .419 

• 423 .092 6 
- .682  .170 12 
- .643 .140 1o 

• 956 .458 41 
• 530 .033 

- .998 .508 57 
• 191 .296 

- , 9 8 5 '  1o472 I 
• 515 .033 I1~ 

- .993 ° 1.469 
.829 .354 28 

o.966 .491 47 
1.000 ,528 62 
- .899  ° 1.368 92 

• 966 .498 47 
- .934 .466 41 
- .995  .536 57 
- .g09 .351 27 

.358 .099 6 
- .139  j .593 35 
- .999  ,546 61 

.369 28 

.269 19 

.480 41 
• 883 52 
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Table 8. TOXE: centrosymmetr& pairs and general two-phase seminvariants for  which both cos (tp u - ~0v) and 
cos (tp,, + tpv) are estimated with IGI > 1.0 

The last columns refer to the cases illustrated in § 4 when assuming (cos ~)c = + 1.0. A_ and A+ are the deviations of the actual phase differ- 
ences or sums from the values indicated by the four cases in (35). 

u Eu ~u 

I)  I0 0 3 2.53 90 
2) 2 0 0 2.00 t80 
3) 7 0 8 3.11 180 
4) 3 5 o 2,65 90 
5) 6 0 2 2.89 0 
6) 6 0 2 2.89 0 
7) 3 16 0 2.58 90 

v Ev ~v A R G  P ,  

8 0 3 2.28 -90 -1.39 .058 
8 0 '2 1 .')8 180 1.38 .940 

11 0 10 2.58 0 -1.26 .074 
1 3 0 2.33 -90 - 1 . 2 2  .080 
2 0 0 2.00 180 -1.20 .083 
8 0 2 1.98 180 -0.92 .137 
9 2 0 2.27 -90 -0.86 .152 

A_ 
Type  G (cos  ~)e (cos  ~0) t IA(cos  tp)l IA~I Case  

A+ 

1) 2 9 2 2.37 -19 10 9 2 2.14 i u - v  3.35 .831 .940 .109 14 a) 20 
u+v 1.58 .610 .951 .341 34 18 

2) 3 9 1 2.70 98 5 9 1 1.95 -90 u-v -3.28 -.827 - .990 .163 26 e) 
u+v 1.34 .550 .990 .440 49 

3) 4 2 1 2.31 -2 2 2 I 1 .95 -165  u - v - 2 . 0 6  -.705 - .956 .251 28 b) 17 
u+v -1.53 - .3 )8  - .974 .376 40 13 

4) 2 16 1 2.44 169 2 2 1 1.95 -165 u-v 1.97 .690 .899 .209 20 a) 26 
u+,, 1.06 .466 .998 .532 59 4 

5) 7 1 7 2.29 61 1 1 5 2.07 83 u-v 1.91 .679 .927 .248 25 d) 22 
u+v -1.41 -.568 - .809 .241 19 36 

6) 7 4 3 3.02 83 9 4 1 2.06 10o u-v 1.54 ".601 .956 .355 36 d) 17 
u÷v -1.25 - .524 - .999 .475 56 3 

7) 10 8 1 2.60 161 4 10 1 2.10 11 u - v - 1 . 3 8  - .560 - .866 .306 26 b) 30 
u+, -1.50 -.591 - .990 .399 46 8 

8) 4 2 1 2.31 -2 4 10 1 2.10 11 u-v 1.37 .558 .974 .416 43 a) 193 
u+v 1.35 .552 .988 .436 48 

9) 7 11 13 2.21 128 1 11 15 2.19 81 u-v 1.23 .518 .682 .164 12 d) 47 
u+v -1.26 - . 5 2 7  - .875 .348 29 29 

10) 4 10 8 2.42 0 2 10 6 2.30 9 u-v 1.22 .515 .988 .473 50 a) 
u+,, 1.35 .552 .988 .436 48 

11) 4 9 3 2.12 100 10 9 3 2.01 -172 u-v -1.16 - .497 .035" .532 32 c) 92 
u+v 1.31 .541 .309 .232 15 72 

12) 3 16 8 2.45 -168 3 16 6 2.32 -28 u-v -1.05 -.463 - .766 .303 22 b) 32 
u+v -1 .94 - .684 -.961 .277 31 16 

variants. The method also allows a generalized use of 
space-group symmetry and its extension to systems 
higher than orthorhombic is a practical computing 
problem and not a theoretical one. 

Our calculations show that it is possible to have quite 
good estimates of some tens of two-phase semin- 
variants, which can be very important in the process of 
phase determination. When we use triple-phase in- 
variants we assume that we know two of the phases in 
order to determine the third. If  the known phases are in 
error, a rapid propagation of errors is possible, and, as 
pointed out by Gilmore (1977), the situation becomes 
worse for quartets where three known phases are 
needed to define the fourth. On the other hand, if we 
reduce the number of phases to two, the propagation of 
error is greatly reduced. The price we have to pay for 
this is that the number of reliably estimated relation- 
ships is greatly reduced. For this reason we believe that 
two-phase seminvariants should be especially useful in 
the initial stages of phase determination. 

Debaerdemaeker & Woolfson (1972) suggested the 
use of two-phase seminvariants to enlarge the starting 
set or to reduce the number of permuted phases which 
must be introduced at the beginning of the phasing 
process by the multisolution method. 

When using magic integers to represent the phases in 
the starting set, the use of two-phase seminvariants in 

defining a secondary set of phases (Declercq, Germain 
& Woolfson, 1975) would greatly reduce the effects of 
error propagation. Two-phase seminvariants, whose 
cosine is evaluated near + 1.0, could form a set of very 
useful relations for use in the calculation of ~, maps 
(White & Woolfson, 1975); in this case negative 
indications in symmorphic space groups could play an 
essential role. 

Phase expansion could also benefit by the use of two- 
phase seminvariants, when performed by a least- 
squares procedure such as that described by Woolfson 
(1977) or that, using the estimated cosine invariants 
and seminvariants, proposed by Gilmore (1977). 

Finally, Giacovazzo (1977a) also suggested the use 
of two-phase seminvariants as a figure of merit to select 
the correct phase set among those produced by a multi- 
solution procedure. Again, in this respect, the ability of  
correctly evaluating, in space groups with no trans- 
lation symmetry, the relations for which ~0,, + ¢p~, _~ n is 
very important. 

The results described in this paper have been 
obtained using the linearized formulae derived by 
means of the Gram-Char l i e r  expansion of the 
characteristic function. As a further attempt at improv- 
ing the estimates of the two-phase seminvariants, we 
intend to use the exponential formulae described in 
paper III; in this way we expect to be able to obtain 
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Table 9. AZET" centrosymmetric pairs and general two-phase seminvariants as in Tables 4 and 5 

u E .  ~e v E,, tpv ARG P+ 

1) 9 5 0 1.97 0 9 1 0 1.85 0 23.90 1.000 
2) 2 7 0 3.16 0 2 3 0 1.83 0 21.05 1.000 
3) 9 3 0 1.95 180 9 1 0 1.85 0 -9.46 0.000 
4) 7 6 0 2.01 180 7 2 0 2.00 180 7.44 1.000 
5) 8 2 0 2.79 180 8 4 0 2.32 0 --6.00 0.000 
6) 7 2 0 2.00 180 7 8 0 1.98 0 -4.44 0.000 
7) 0 4 0 3.47 0 0 6 0 2.68 180 -2.37 0.009 
8) 2 7 0 3.16 0 6 7 0 2.26 0 1.82 0.974 
9) 2 7 0 3.16 0 16 7 0 2.21 180 --1.35 0.063 

10) 7 6 0 2.01 180 7 8 0 1.98 0 -1.18 0.086 
11) 16 '7 0 2.21 180 14 7 0 2.14 180 i.17 0.912 
12) 6 7 0 2.26 0 2 3 0 1.83 0 1.12 0.904 
13) 7 1 0 1.95 0 9 1 0 1.85 0 1.06 0.893 

G (cos ~)c (cos ~), IA(cos ¢)1 lanai 
t )  16 0 7 1.91 -26 16 4 7 1.87 -23 28.64 .970 .999 .029 12 
2) 19 3 5 2.16 t03 19 1 5 1.78 -102 -25.88 - .970 - .906 .064 11 
3) 27 1 2 2.00 -118 27 3 2 1.99 60 -21.19 - .970 - .999 .029 12 
4) 14 7 3 2.28 -15~ 14 5 3 1.$5 51 -3.90 - .852 -.$75 .023 3 
5) 17 3 7 2.18 t55 13 3 7 2.09 153 3.13 .818 .999 . t 8 t  33 
6) 11 3 2 2.31 -110 15 3 2 1.89 -110 3.06 .814 1.000 .186 36 
7) tO 5 6 2.19 178 14 5 6 2.11 149 2.68 .784 .$75 .091 9 
8) 1 3 10 2.02 -137 5 3 tO 1.90 -165 2.53 .768 .$83 .115 12 
9) 25 3 3 2.26 tO0 29 3 3 2.22 35 2.38 .751 .423 .328 24 

10) 18 5 5 1.81 -91 4 5 5 1.77 60 -2 .33 - .744 -.875 . t 3 t  13 
11) 20 5 1 2.38 4 16 5 1 2.26 6 2 .0~ .703 .999 .296 43 
12) 9 8 2 2.49 50 5 8 2 1.94 35 2.02 .698 .966 .268 31 
13) 21 3 3 2.32 51 25 3 3 2.26 100 1.78 .654 .656 .002 0 
14) 16 5 5 2.23 87 4 5 5 1.77 60 1.77 .652 .891 .239 22 
15) 6 2 3 2.19 51 22 2 3 1.81 -117 -1 .77 - .652 - .978 .326 37 
16) 17 3 3 2.63 25 29 3 3 2.22 35 1.64 .624 .985 .361 41 
17) 4 5 6 2.53 -3 10 5 6 2.19 178 -1.61 - .617 -1.000 .383 52 
18) 22 0 7 2.06 170 26 0 7 2.04 154 1.55 .603 .961 .358 37 
19) 17 3 3 2.63 25 31 3 3 2.20 -132 -1.53 - .598 -.921 .323 30 
20) 18 5 1 1.95 -176 22 5 1 1.92 -175 1.47 .584 1.000 .416 54 
21) 17 3 3 2.63 25 21 3 3 2.32 51 1.47 .584 .899 .315 28 
22) 1 3 4 2.15 -138 5 3 4 2.08 -32 1.47 .584 - .276"  .860 52 
23) 22 2 7 2.22 -55 8 2 7 1.79 149 -1.45 - .579 - .914 .335 31 
24) 9 3 4 2.34 -72 13 3 4 1.80 -75 1.45 .579 .999 .420 52 
25) 1 8 2 2.01 64 5 8 2 1.94 35 1.44 .576 .875 .299 26 
26) 15 3 1 2.56 -3 29 3 1 1.94 -177 -1.36 - .555 - .995 .440 51 
27) 4 5 6 2.53 -3 0 5 6 2.53 -21 1.36 .555 .951 .396 38 
28) 9 3 4 2.34 -72 5 3 4 2.08 -32 1.34 .550 .766 .216 17 
29) 29 3 3 2.22 35 31 3 3 2.20 -132 -1 .34  - .550 - .974 .424 44 
30) 4 5 2 1.96 -138 26 1 2 1.90 -15.2 1.28 .533 .970 .437 44 
31) 0 5 6 2.53 -21 14 5 6 2.11 149 -1 .24 -.521 -.985 .464 49 
32) 15 3 1 2.56 -3 31 3 1 2.15 40 1.23 .518 .731 .213 16 
33) 11 3 2 2.31 -110 27 3 2 1.99 60 -1.23 - .518 -.985 .467 49 
34) 24 0 7 2.43 -35 16 0 7 1.91 -26 1.22 .515 .988 .473 50 
35) 5 8 2 1.94 35 13 2 2 1.83 -104 -1.18 - .503 - .755 .252 19 
36) 25 3 3 2.26 100 31 3 3 2.20 -132 -1.16 -.497 - .616 .119 8 
37) 9 8 2 2.49 50 1 8 2 2.01 64 1,15 .494 .970 .476 46 
38) 9 8 2 2.49 50 13 2 2 1.83 -104 -1.10 - .479 - .899 .420 35 
39) 7 1 1 1.87 -168 23 5 1 1.86 157 1.09 .476 .819 .343 27 
40) 22 0 7 2.06 170 16 0 7 1.91 -26 -1.08 - .472 -.961 .489 46 
41) 5 3 4 2.08 -32 13 3 4 1.80 -75 1.05 .463 .731 .268 19 
42) 26 5 1 1.98 144 18 5 1 1.95 -176 1.04 .459 .766 .307 23 
43) 2 5 4 2.84 -48 14 5 4 2.76 168 -1.01 - .449 -.809 .360 27 
44) 24 0 7 2.43 -35 16 4 7 1.87 -23 1.01 .449 .978 .529 51 

two-phase seminvariant estimates in the vicinity of ~r/2 term j, show, for HEPTA, that the maximum value 
also, with the corresponding variances. A more direct alone is too small to give reliable estimates. In one or 
comparison with the results obtained by Green & two cases, when the indication of the maximum ARG is 
Hauptman (1978a) (G & H) in the space group P2~ wrong, the other contributors tend to lower the weight 
will then be possible, of the relationship. We believe, therefore, that the 

Here we restrict our attention to an important inclusion of all the terms contributing to a certain 
difference between our method and that of G & H. As seminvariant can improve its estimate. 
we have seen [cf. equation (22)] in space group P2~ the 
vectors corresponding to the phasing magnitudes lie on 
a reciprocal-lattice row with a free index k (b unique References 
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Abstract 

A rotation-function study of flavocytochrome b 2 has 
been carried out using X-ray data from crystals which 
contain one tetramer of 230 000 Dalton per asym- 
metric unit. The function computed from 10-5.5 /k 
resolution data clearly shows the orientation of the 
molecular 222 symmetry axes. The presence of these 
symmetry elements is consistent with previous struc- 
tural and biochemical studies of the molecule. 

I. Introduction 

Bakers yeast flavocytochrome b 2 [L-(+)-lactate cyto- 
chrome c oxidoreductase, EC 1.1.2.3) contains four 
identical subunits and has a molecular weight of 
230 000 Dalton (Jacq & Lederer, 1974). It contains 
one protoheme IX and one flavin mononucleotide 
prosthetic group per subunit. It catalyzes the oxidation 
of lactate to pyruvate in mitochondria with the reducing 
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equivalents passing to oxygen via the cytochrome c-  
cytochrome oxidase pathway (Pajot & Claisse, 1974). 

When flavocytochrome b 2 is digested exhaustively 
with trypsin a small trypsin-resistant heme peptide, 
cytochrome b 2 core, remains intact (Labeyrie, 
Groudinsky, Jacquot-Armand & Naslin, 1966). The 
amino-acid sequence of the 96 residues of cytochrome 
b2 core is remarkably homologous to that of micro- 
somal cytochrome b 5 (Guiard & Lederer, 1976). Com- 
parison of the two sequences with the atomic model of 
cytoehrome b5 (Mathews, Argos & Levine, 1971) 
indicates a possible structural similarity of the two 
molecules, as supported by other chemical and spectro- 
scopic evidence (Guiard, Groudinsky & Lederer, 1974). 

Large single crystals of flavocytochrome b2 have 
been prepared which diffract to about 2-5/k resolution 
(Mathews & Lederer, 1976). These crystals are trigonal 
and contain one tetramer in the asymmetric unit cell. 
The tetramer is expected to possess 222 symmetry 
(Olive, Barbotin & Risler, 1973). As part of the 
structural investigation of flavocytochrome b 2 it is 
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